KY-026 Détecteur de flamme

De SensorKit X40 Wiki

Aller à : navigation, rechercher

Photo

ky-026.jpg

Données techniques / Description sommaire

La photodiode est sensible spectre lumineux généré par une flamme.

Sortie numérique:
 un signal est émis si une flamme détectée.
Sortie analogique:  mesure directe du capteur


LED1: indique que le capteur est alimenté en tension
LED2: indique qu'une flamme est détectée

Brochage

4 dig V G An.png

Fonctionnement du capteur

Ce module est composé de trois éléments fonctionnels. Le capteur situé à l'avant du module effectue la mesure, le signal analogique est ensuite envoyé sur l'amplificateur. Celui-ci amplifie le signal en fonction du gain déterminé par le potentiomètre et envoie le signal à la sortie analogique du module.

Il convient de noter que le signal est inversé: plus la valeur mesurée par le capteur est haute, plus la tension de sortie est faible.

La troisième partie est composée d'un comparateur qui commute la sortie numérique et la diode lorsque le signal tombe en dessous d'une certaine valeur. La sensibilité peut être ajustée au moyen du potentiomètre comme décrit ci-dessous:


Empfindlichkeit Potentiometer.jpg


Ce capteur ne délivre pas des valeurs absolues (par exemple, la température mesurée avec précision en ° C ou de la force du champ magnétique en mT).Les valeurs mesurées sont relatives. on définit une valeur limite par rapport à une valeur normale donnée et le module émet un signal si cette limite est dépassée.

Ce fonctionnement est idéal pour la surveillance de la température (KY-028), les détecteurs de proximité (KY-024, KY 025, KY-036), la surveillance des alarmes (KY-037, KY-038) ou le détecteur de flamme (KY-026).

Exemple de code pour Arduino

Le programme lit la valeur de la tension à la sortie analogique et l'envoie vers le port série.

L'état dela sortie numérique est également indiqué dans la console, ce qui permet de savoir su le seuil a été atteint ou pas.

// Déclaration et initialisation des broches d'entrées
int Analog_Eingang = A0; // X-Achse-Signal
int Digital_Eingang = 3; // Knopf
 
void setup ()
{
  pinMode (Analog_Eingang, INPUT);
  pinMode (Digital_Eingang, INPUT);
      
  Serial.begin (9600); // Sortie série à 9600 bauds
}
 
// Le programme lit les valeurs des broches d'entrée et les envoie à la sortie série
void loop ()
{
  float Analog;
  int Digital;
   
  //Les valeurs sont lues, sont converties en tension...
  Analog = analogRead (Analog_Eingang) * (5.0 / 1023.0); 
  Digital = digitalRead (Digital_Eingang);
   
  //... et envoyées à la sortie série.
  Serial.print ("Tension analogique:"); Serial.print (Analog, 4);  Serial.print ("V, ");
  Serial.print ("Limite:");
 
  if(Digital==1)
  {
      Serial.println (" atteinte");
  }
  else
  {
      Serial.println (" pas encore atteinte");
  }
  Serial.println ("----------------------------------------------------------------");
  delay (200);
}

Affectation des broches Arduino:

Signal numérique = [Pin 3]
+V = [Pin 5V]
GND = [Pin GND]
Signal analogique = [Pin 0]

Exemple de programme à télécharger

Ard_Analoger_Sensor.zip

Codebeispiel Raspberry Pi

!! Achtung !! Analoger Sensor  !! Achtung !!

Der Raspberry Pi besitzt im Gegensatz zum Arduino keine analogen Eingänge bzw. es ist kein ADC (analog digital Converter) im Chip des Raspberry Pi's integriert. Dies schränkt den Raspberry Pi ein, wenn man Sensoren einsetzen möchte, wo nicht digital Werte ausgegeben werden [Spannungswert überschritten -> digital EIN | Spannungswert unterschritten -> digital AUS | Beispiel: Knopf gedrückt [EIN] Knopf losgelassen [AUS]], sondern es sich hier um einen kontinuierlichen veränderlichen Wert handeln sollte (Beispiel: Potentiometer -> Andere Position = Anderer Spannungswert)

Um diese Problematik zu umgehen, besitzt unser Sensorkit X40 mit dem KY-053 ein Modul mit 16 Bit genauen ADC, welches Sie am Raspberry nutzen können, um diesen um 4 analoge Eingänge erweitern zu können. Dieses wird per I2C an den Raspberry Pi angeschlossen, übernimmt die analoge Messung und gibt den Wert digital an den Raspberry Pi weiter.

Somit empfehlen wir, bei analogen Sensoren dieses Sets das KY-053 Modul mit dem besagten ADC dazwischenzuschalten. Nähere Informationen finden Sie auf der Informationsseite zum KY-053   Analog Digital Converter

!! Achtung !! Analoger Sensor  !! Achtung !!

Das Programm nutzt zur Ansteuerung des ADS1115 ADC die entsprechenden ADS1x15 und I2C Python-Libraries der Firma Adafruit. Diese wurden unter dem folgenden Link [https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code] unter der BSD-Lizenz [Link] veröffentlicht. Die benötigten Libraries sind im unteren Download-Paket enthalten.

Das Programm liest die aktuellen Werte der Eingang-Pins und gibt diese in der Konsole als Wert in [mV] aus.

Zudem wird ebenfalls der Zustand des digitalen Pins in der Konsole angegeben, was bedeutet ob der Grenzwert unterschritten wurde oder nicht.

#
#!/usr/bin/python
# coding=utf-8

#############################################################################################################
### Copyright by Joy-IT
### Published under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
### Commercial use only after permission is requested and granted
###
### Analog Sensor + ADS1115 ADC - Raspberry Pi Python Code Example
###
#############################################################################################################


# Dieser Code nutzt die ADS1115 und die I2C Python Library fuer den Raspberry Pi
# Diese ist unter folgendem Link unter der BSD Lizenz veroeffentlicht
# [https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code]
from Adafruit_ADS1x15 import ADS1x15
from time import sleep

# Weitere benoetigte Module werden importiert und eingerichtet
import time, signal, sys, os
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

# Benutzte Variablen werden initialisiert
delayTime = 0.2

# Adresszuweisung ADS1x15 ADC

ADS1015 = 0x00  # 12-bit ADC
ADS1115 = 0x01  # 16-bit

# Verstaerkung (Gain) wird ausgewaehlt
gain = 4096  # +/- 4.096V
# gain = 2048  # +/- 2.048V
# gain = 1024  # +/- 1.024V
# gain = 512   # +/- 0.512V
# gain = 256   # +/- 0.256V

# Abtasterate des ADC (SampleRate) wird ausgewaehlt
# sps = 8    # 8 Samples pro Sekunde
# sps = 16   # 16 Samples pro Sekunde
# sps = 32   # 32 Samples pro Sekunde
sps = 64   # 64 Samples pro Sekunde
# sps = 128  # 128 Samples pro Sekunde
# sps = 250  # 250 Samples pro Sekunde
# sps = 475  # 475 Samples pro Sekunde
# sps = 860  # 860 Samples pro Sekunde

# ADC-Channel (1-4) wird ausgewaehlt
adc_channel = 0    # Channel 0
# adc_channel = 1    # Channel 1
# adc_channel = 2    # Channel 2
# adc_channel = 3    # Channel 3

# Hier wird der ADC initialisiert - beim KY-053 verwendeten ADC handelt es sich um einen ADS1115 Chipsatz
adc = ADS1x15(ic=ADS1115)

# Hier waehlt man den Eingangs-Pin des digitalen Signals aus
Digital_PIN = 24
GPIO.setup(Digital_PIN, GPIO.IN, pull_up_down = GPIO.PUD_OFF)

#############################################################################################################

# ########
# Hauptprogrammschleife
# ########
# Das Programm liest die aktuellen Werte der Eingang-Pins
# und gibt diese in der Konsole aus

try:
        while True:
                #Aktuelle Werte werden aufgenommen
                analog = adc.readADCSingleEnded(adc_channel, gain, sps)

                # Ausgabe auf die Konsole
                if GPIO.input(Digital_PIN) == False:
                        print "Analoger Spannungswert:", analog,"mV, ","Grenzwert: noch nicht erreicht"
                else:
                        print "Analoger Spannungswert:", analog, "mV, ", "Grenzwert: erreicht"
                print "---------------------------------------"

                # Reset + Delay
                button_pressed = False
                time.sleep(delayTime)



except KeyboardInterrupt:
        GPIO.cleanup()

Anschlussbelegung Raspberry Pi:

Sensor

digitales Signal = GPIO 24 [Pin 18 (RPi)]
+V = 3,3V [Pin 1 (RPi)]
GND = Masse [Pin 06 (RPi)]
analoges Signal = Analog 0 [Pin A0 (ADS1115 - KY-053)]

ADS1115 - KY-053:

VDD = 3,3V [Pin 01]
GND = Masse [Pin 09]
SCL = GPIO03 / SCL [Pin 05]
SDA = GPIO02 / SDA [Pin 03]
A0 = s.o. [Sensor: analoges Signal]

Beispielprogramm Download

RPi_AnalogSensor.zip


Zu starten mit dem Befehl:

sudo python RPi_AnalogSensor.py